Plants - Drugs Mind - Spirit Freedom - Law Arts - Culture Library  
Erowid References Database
Pan HS, Wang RY. 
“The action of (+/-)-MDMA on medial prefrontal cortical neurons is mediated through the serotonergic system”. 
Brain Res. 1991;543(1):56-60.
The mechanism of action of systemically administered (+/-)-MDMA (3,4-methylenedioxymethamphetamine) on spontaneously active neurons in the medial prefrontal cortex (mPFc) of chloral hydrate anesthetized rats was examined using standard single unit extracellular recording techniques. Intravenously administered MDMA dose-dependently decreased the firing rates of the majority of mPFc neurons in control rats. In contrast, in rats that were pretreated with p-chlorophenylalanine (PCPA), which depletes the brain serotonin (5-hydroxytryptamine, 5-HT) content by inhibiting tryptophan hydroxylase, the rate-limiting enzyme in the synthesis of 5-HT, MDMA was largely ineffective in inhibiting the firing of mPFc cells. In PCPA-treated animals, the administration of 5-hydroxytryptophan (5-HTP), which presumably restored the brain 5-HT content, but not L-DOPA, reinstated MDMA's inhibitory action in PCPA-treated rats. In rats that were pretreated with alpha-methyl-p-tyrosine (AMPT), which depletes the brain dopamine (DA) content by inhibiting tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of DA, MDMA inhibited the firing of all of the mPFc cells. MDMA's effect on mPFc neurons was reversed by 5-HT receptor antagonists such as granisetron and metergoline. These results strongly suggest that MDMA exerts its action on mPFc cells indirectly by releasing endogenous 5-HT.
Comments and Responses to this Article
Submit Comment
[ Cite HTML ]