Erowid
 
 
Plants - Drugs Mind - Spirit Freedom - Law Arts - Culture Library  
Erowid References Database
Baumann MH, Ayestas MA, Dersch CM, Rothman RB. 
“1-(m-chlorophenyl)piperazine (mCPP) dissociates in vivo serotonin release from long-term serotonin depletion in rat brain”. 
Neuropsychopharmacology. 2001 May;24(5):492-501.
Abstract
Serotonin (5-HT) releasing agents such as d-fenfluramine are known to cause long-term depletion of forebrain 5-HT in animals, but the mechanism of this effect is unknown. In the present study, we examined the relationship between drug-induced 5-HT release and long-term 5-HT depletion in rat brain. The 5-HT-releasing actions of d-fenfluramine and a non-amphetamine 5-HT drug, 1-(m-chlorophenyl)piperazine (mCPP), were compared using in vivo microdialysis in the nucleus accumbens. The ability of d-fenfluramine and mCPP to interact with 5-HT transporters was tested using in vitro assays for [3H]5-HT uptake and radioligand binding. Local infusion of d-fenfluramine or mCPP (1-100 microM) increased extracellular 5-HT, with elevations in dopamine occurring at high doses. Intravenous injection of either drug (1-10 micromol/kg) produced dose-related increases in 5-HT without affecting dopamine. d-Fenfluramine and mCPP exhibited similar potency in their ability to stimulate 5-HT efflux in vivo and interact with 5-HT transporters in vitro. When rats received high-dose d-fenfluramine or mCPP (10 or 30 micromol/kg, i.p., every 2 h, 4 doses), only d-fenfluramine-treated rats displayed long-term 5-HT depletions. Thus, mCPP is a 5-HT releaser that does not appear to cause 5-HT depletion. Our data support the notion that 5-HT release per se may not be sufficient to produce the long-term 5-HT deficits associated with d-fenfluramine and other amphetamines.
Comments and Responses to this Article
#
Submit Comment
[ Cite HTML ]