Erowid
 
 
Plants - Drugs Mind - Spirit Freedom - Law Arts - Culture Library  
Erowid References Database
Buchert R, Obrocki J, Thomasius R, Väterlein O, Petersen K, Jenicke L, Bohuslavizki KH, Clausen M. 
“Long-term effects of 'ecstasy' abuse on the human brain studied by FDG PET”. 
Nucl Med Commun. 2001 Aug 26;22(8):889-97.
Abstract
The popular recreational drug, 'ecstasy', mainly contains 3,4-methylenedioxymethamphetamine MDMA as the psychotropic agent. MDMA is suspected of causing neurotoxic lesions to the serotonergic system as demonstrated by animal studies, examinations of human cerebrospinal fluid, and the first positron emission tomography PET studies using the serotonin transporter ligand [11C]-McN5652. Damage of serotonergic afferents might mediate long-lasting alterations of cerebral glucose metabolism as a secondary effect. To study a relationship between ecstasy use and long-lasting alterations, PET using 2-[18F]-fluoro-2-deoxy-d-glucose FDG was performed in 93 ecstasy users and 27 subjects without any known history of illicit-drug abuse. As an index of glucose metabolism, mean normalized FDG uptake was determined in both groups using a computerized brain atlas, and was compared for a selected number of brain regions. FDG uptake was normalized in each individual by dividing local FDG uptake by the maximum FDG uptake in the individual's brain. Within the group of ecstasy users we examined the relationship between FDG uptake and cumulative ecstasy dose, time since last ecstasy ingestion at the time of PET scanning, and age at first ecstasy use, respectively. Normalized FDG uptake was reduced within the striatum and amygdala of ecstasy users when compared to controls. No statistically significant correlation of the FDG uptake and the cumulative dose of ecstasy was detected. A positive correlation was found in the cingulate between FDG uptake and the time since last ecstasy ingestion. As compared to the control group, normalized FDG uptake in the cingulate was reduced in ecstasy users who took ecstasy during the last 6 months, while it was elevated in former ecstasy users who did not consume ecstasy for more than 1 year. FDG uptake was significantly more affected in ecstasy users who started to consume ecstasy before the age of 18 years. In conclusion, ecstasy abuse causes long-lasting effects on glucose metabolism in the human brain. These effects are more severe in the case of very early abuse. However, several questions still remain to be answered, i.e. the correlation of the neuronal alterations and the history of ecstasy use cumulative dose, and time since the last dose and its reversibility.
Comments and Responses to this Article
#
Submit Comment
[ Cite HTML ]